储能科学与技术

• 特约文章 •    下一篇

二氧化锰@纳米多孔金/泡沫镍电极材料的制备及其超级电容性能

梁耀华,柯  曦,刘  军,施志聪   

  1. 广东工业大学材料与能源学院新能源材料与器件系,广东 广州 510006
  • 收稿日期:2017-08-14 修回日期:2017-09-08 出版日期:2017-10-01 发布日期:2017-10-01
  • 通讯作者: 柯曦,讲师,主要从事新能源材料与器件相关研究,E-mail:kexi@gdut.edu.cn;施志聪,教授,主要从事先进二次电池关键材料的应用基础研究,E-mail:zhicong@gdut.edu.cn。
  • 作者简介:梁耀华(1992—),男,硕士研究生,研究方向为电化学,E-mail:472375663@qq.com
  • 基金资助:
    国家自然科学基金项目(21673051,51604086),广东省科技厅公益研究项目(2016A010104015),广州市科技计划项目产学研协同创新重大专项对外科技合作专题(201604030037,201704030011),广东工业大学青年重点项目(252151038)。

Preparation and supercapacitive performance of MnO2@ nanoporous gold/Ni foam electrode materials

LIANG Yaohua, KE Xi, LIU Jun, SHI Zhicong   

  1. Department of New Energy Materials and Devices, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
  • Received:2017-08-14 Revised:2017-09-08 Online:2017-10-01 Published:2017-10-01

摘要: 通过结合电化学沉积法与化学去合金法制备纳米多孔金(NPG)/泡沫镍(Ni foam)电极,采用电化学沉积法把二氧化锰(MnO2)沉积在NPG/Ni foam基底表面,获得MnO2@NPG/Ni foam复合电极材料。采用扫描电子显微镜(SEM)、能谱仪(EDS)和X射线光电子能谱(XPS)等分析了MnO2@NPG/Ni foam复合电极材料的微观形貌和成分。将该复合电极材料作为超级电容器的电极材料,对其充放电特性和循环稳定性等电化学性能进行测试。结果表明,与直接在Ni foam表面电化学沉积生长MnO2材料(MnO2@Ni foam)相比,MnO2@NPG/Ni foam复合电极材料拥有更高的比电容、更优的倍率性能及循环性能。在1 A/g的电流密度下,MnO2@NPG/Ni foam复合电极材料的比电容值为377.9 F/g。经过在50 mV/s的扫描速度下循环2500次后,该电极材料的比容量保持在99%左右。

关键词: 超级电容器, 纳米多孔金, 二氧化锰, 泡沫镍, 去合金, 电化学沉积

Abstract:

Nanoporous gold (NPG) was prepared on Ni foam through electrodeposition of Au-Sn alloy and chemical dealloying. MnO2 was electrodeposition NPG/Ni foam to obtain the MnO2@NPG/Ni foam electrode material. The surface morphology and composition of the MnO2@NPG/Ni foam electrode were characterized by means of scanning electron microscopy (SEM),energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The as-prepared electrode was employed as the supercapacitor electrode material, and its charge-discharge characteristics and cyclic stability were tested. The results show that the MnO2@NPG/Ni foam electrode exhibits a greatly enhanced specific capacitance, better rate capability and cyclic stability compared to the MnO2@Ni foam electrode. The MnO2@NPG/Ni foam composite electrode provides a specific capacitance of 377.9 F·g1 at a current density of 1 A·g1. The capacitance retention of the MnO2@NPG/Ni foam composite electrode remains 99% after 2500 cycles at a scan rate of 50 mV·s1.

Key words:  supercapacitor, nanoporous gold, manganese dioxide, nickel foam, dealloying, electrodeposition