储能科学与技术 ›› 2020, Vol. 9 ›› Issue (1): 25-39.doi: 10.19799/j.cnki.2095-4239.2019.0179

• 储能材料与器件 • 上一篇    下一篇

钾离子电池负极材料研究进展

张贺贺(), 孙旦, 王海燕(), 唐有根   

  1. 化学电源湖南省重点实验室,中南大学化学化工学院,湖南 长沙 410083
  • 收稿日期:2019-08-02 修回日期:2019-09-14 出版日期:2020-01-05 发布日期:2020-01-10
  • 通讯作者: 王海燕 E-mail:sangnicc@163.com;wanghy419@126.com
  • 作者简介:张贺贺(1994—),男,硕士研究生,主要研究方向为钾离子电池负极材料,E-mail:sangnicc@163.com
  • 基金资助:
    国家自然科学基金项目(21571189);湖南省科技计划重大专项(2017GK1040)

Current studies of anode materials for potassium-ion battery

Hehe ZHANG(), Dan SUN, Haiyan WANG(), Yougen TANG   

  1. Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
  • Received:2019-08-02 Revised:2019-09-14 Online:2020-01-05 Published:2020-01-10
  • Contact: Haiyan WANG E-mail:sangnicc@163.com;wanghy419@126.com

摘要:

钾具有资源丰富、来源广泛,价格低廉的特点;在电化学体系中,钾具有较低的电极电势与较快的离子电导率,因此钾离子电池被认为是未来替代锂离子电池的理想储能体系。然而,由于钾离子的尺寸(1.38 ?,1 ?=10-10 m)远大于锂离子(0.76 ?),适用于锂离子电池的电极材料在嵌钾后会发生巨大的体积膨胀和结构破坏,难以满足实际应用的需要。近年来,为寻找适宜嵌钾的材料与抑制膨胀的方法,越来越多的电极材料体系被开发出来。本文综述了钾离子电池负极材料的研究进展,重点介绍了碳基材料(石墨、硬碳、软碳等),钛基材料,合金类材料,转化类材料以及有机化合物等体系的嵌钾机理与结构-性能关系,探讨了各体系材料存在的优势与缺陷;特别分析了存在于碳基材料的两种储钾机制(插层机制与赝电容机制)及各自对电化学性能的影响,指出了发生在电极表面的赝电容机制更适于钾离子的储存,并整理介绍了提高赝电容行为贡献量的方法。此外,展望了钾离子电池体系未来发展的方向和应用前景。

关键词: 钾离子电池, 负极材料, 碳基材料, 合金

Abstract:

Potassium is abundant in nature and cheap. In electrochemical systems, potassium has a lower redox potential and faster ionic conductivity; thus, potassium-ion batteries (PIBs) are expected to be a promising alternative to lithium-ion batteries (LIBs) in the future. However, because K+ (1.38 ?) is considerably larger than Li+ (0.76 ?), huge volume expansion and structural damage can be observed after K+ intercalation into the electrode materials extensively used in LIBs. These electrodes do not meet the needs of practical applications. To address these issues, increasing number of electrode materials have been recently developed. In this study, current research on anode materials for PIBs is reviewed, with emphasis on the potassium intercalation mechanism and structure-performance relation of carbon-based materials (graphite, hard carbon, and soft carbon), titanium-based materials, alloys, conversion materials, and organic compounds. The advantages and main problems of these anode materials are discussed. Additionally, the two main potassium storage mechanisms (intercalation and pseudocapacitance) in carbon-based electrodes and their effects on electrochemical properties are emphasized. The pseudocapacitance mechanism occurring on the electrode surface appears to be suitable for the fast storage of K+, and methods for increasing the contribution of pseudocapacitive behavior are introduced in this study. Simultaneously, the research directions and application prospects of future developments in PIB systems are discussed.

Key words: potassium-ion battery, anode material, carbon-based material, alloys

中图分类号: