Development course and future direction of chemical power sources
TONG Huan1, ZHANG Bei2
1 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China;
2 Center of Fundamental Natural Science Experiment, University of Science and Technology Beijing, Beijing 100083, China
Abstract:The chemical power source, or battery, which serves as an energy-carrying device or system, plays a very important role in the development and utilization of new energy resources, either in field of transforming chemical energy stored in materials into electrical energy, or storing the excess electricity as the chemical energy. In this paper, the principle, performance, application as well as history of 12 different types of chemical power sources are reviewed, and the future development directions of these chemical power sources are also prospected based on the current demands of China's mobile power supply and large-scale grid energy storage.
佟欢, 张蓓. 化学电源的发展历程及未来方向[J]. 储能科学与技术, 2018, 7(S1): 8-16.
TONG Huan, ZHANG Bei. Development course and future direction of chemical power sources. Energy Storage Science and Technology, 2018, 7(S1): 8-16.
[1] VINCENT C A, SCROSATI B, LAZZARI M, et al. Modern batteries:An introduction to electrochemical power sources[M]. Edward Arnold, 1984.
[2] REDDY T B, LINDEN D. Linden's handbook of batteries[M]. USA:McGraw-Hill Education, 2010.
[3] ELVERS B. Ullmann's energy, 3 volume set:resources, processes, products[M]. Wiley VCH, 2015.
[4] BUCHMAN I. Batteries in a portable world:A handbook on rechargeable batteries for non-engineers[M]. Cadex Electronics Inc., 2001.
[5] 陶占良, 陈军. 铅碳电池储能技术[J]. 储能科学与技术, 2015, 4(6):546-555. TAO Z L, CHEN J. Lead carbon ultrabatteries for energy storage[J]. Energy Storage Science and Technology, 2015, 4(6):546-555.
[6] 柳颖. 几种新技术铅蓄电池的研究进展[J]. 通信电源技术, 2016, 33(5):103-104. LIU Y. Research Progress of several new technologies lead storage batteries[J]. Telecom Power Technology, 2016, 33(5):103-104.
[7] 李现红. 双极性铅酸蓄电池发展概述[J]. 蓄电池, 2012, 49(6):269-272. LI X H. Overview of the development of bipolar lead-acid batteries[J]. Chinese Labat Man, 2012, 49(6):269-272.
[8] 石沫, 朱溢慧, 章小琴, 等. 双极性铅酸蓄电池的研究及进展概述[J]. 蓄电池, 2016, 53(3):146-150. SHI M, ZHU Y H, ZHANG X Q, et al. Updated research and progress of bipolar lead-acid battery[J]. Chinese Labat Man, 2016, 53(3):146-150.
[9] 郝科涛, 吕晓军, 贾明, 等. 铅酸电池负极板栅Al/Pb复合材料的制备及性能[J]. 中国有色金属学报, 2013, 23(6):1591-1597. HAO K T, LV X J, JIA M, et al. Preparation and performance of Al/Pb composite material for lead-acid battery negative grid[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(6):1591-1597.
[10] 陈冬, 程杰, 潘军青, 等. 碳作为铅酸电池集流体的研究进展[J]. 现代化工, 2011, 31(11):25-28. CHEN D, CHENG J, PAN J Q, et al. Progress in carbon as active materials carrier and current collector for lead acid batteries[J]. Modern Chemical Industry, 2011, 31(11):25-28.
[11] 李桂发, 郭志刚, 刘玉, 等. 胶体电解液在铅酸动力电池的应用研究[J]. 蓄电池, 2017, 54(1):15-28. LI G F, GUO Z G, LIU Y, et al. Study on the application of gelled electrolyte in power batteries[J]. Chinese Labat Man, 2017, 54(1):15-28.
[12] 边伟, 鲁植雄, 杨柳. 新型车载全胶体材料铅酸蓄电池开发及性能[J]. 电源技术, 2017, 41(4):577-578. BIAN W, LU Z X, YANG L. Development and performance of new type of onboard all colloid material lead-acid battery[J]. Chinese Journal of Power Sources, 2017, 41(4):577-578.
[13] 陈军, 陶占良, 苟兴龙. 化学电源:原理、技术与应用[M]. 北京:化学工业出版社, 2006. CHEN J, TAO Z L, GOU X L. Chemical power sources:Principle technology&application[M]. Beijing:Chemical Industry Press, 2006.
[14] WILLEMS J J G, BUSCHOW K H J. From permanent magnets to rechargeable hydride electrodes[J]. Journal of the Less Common Metals, 1987, 129(87):13-30.
[15] BRANDT K. Historical development of secondary lithium batteries[J]. Solid State Ionics, 1994, 69(3/4):173-183.
[16] WHITTINGHAM M S. Lithium batteries and cathode materials[J]. Chemical Reviews, 2004, 104(10):4271-4302.
[17] NAGAURA T, TOZAWA K. Lithium ion rechargeable battery[J]. Progress in Batteries and Solar Cells, 1990, 9:209-217.
[18] KAMALI A R, FRAY D J. Tin-based materials as advanced anode materials for lithium ion batteries:A review[J]. Reviews on Advanced Materials Science, 2011, 27(1):14-24.
[19] 赵书平, 王婵, 杨正龙, 等. 锂离子电池负极材料二氧化锡的研究进展[J]. 材料导报, 2016, 30(1):136-142.
[20] ZHAO S P, WANG C, YANG Z L, et al. Research progress of Tin dioxide as anode materials for lithium ion batteries[J]. Materials Review, 2016, 30(1):136-142.
[21] ZHANG L, LIU X, ZHAO Q, et al. Si-containing precursors for Si-based anode materials of Li-ion batteries:A review[J]. Energy Storage Materials, 2016, 4:92-102.
[22] CHEN T, WU J, ZHANG Q, et al. Recent advancement of SiOx, based anodes for lithium-ion batteries[J]. Journal of Power Sources, 2017, 363:126-144.
[23] CHENG X B, ZHANG R, ZHAO C Z, et al. Toward safe lithium metal anode in rechargeable batteries:A Review[J]. Chemical Reviews, 2017, 117(15):10403-10473.
[24] LIN D, LIU Y, CUI Y. Reviving the lithium metal anode for high-energy batteries[J]. Nature Nanotechnology, 2017, 12(3):194-206.
[25] 王伟东, 仇卫华, 丁倩倩. 锂离子电池三元材料:工艺技术及生产应用[M]. 北京:化学工业出版社, 2015. WANG W D, QIU W H, DING Q Q. Nickle cobalt manganese based cathode materials for Li-ion batteries technology production and application[M]. Beijing:Chemical Industry Press, 2015.
[26] GAO S, YANG T, ZHANG H, et al. Improved electrochemical performance and thermal stability of Li-rich material Li1.2(Ni0.25Co0.25Mn0.5)0.8O2 through a novel core-shelled structure design[J]. Journal of Alloys & Compounds, 2017, 729:695-702.
[27] LIU Y, LU Z, DENG C, et al. Preparation and electrochemical properties of high-voltage spinel LiNi0.5Mn1.5O4 synthesized by using different manganese sources[J]. ChemElectroChem, 2017, 4(5):1205-1213.
[28] MANTHIRAM A, YU X, WANG S. Lithium battery chemistries enabled by solid-state electrolytes[J]. Nature Reviews Materials, 2017, 2(3):doi:http://doi.org/10.1038/natrevmats.2016.103.
[29] SUN C, LIU J, GONG Y, et al. Recent advances in all-solid-state rechargeable lithium batteries[J]. Nano Energy, 2017, 33:363-386.
[30] XING L B, XI K, LI Q, et al. Nitrogen, sulfur-codoped graphene sponge as electroactive carbon interlayer for high-energy and -power lithium-sulfur batteries[J]. Journal of Power Sources, 2016, 303:22-28.
[31] 黄祯, 冯国星. 中国科学院高能量密度锂电池研究进展快报[J]. 储能科学与技术, 2016, 5(2):172-176. HUANG Z, FENG G X. Progress on high energy density lithium batteries by CAS battery research group[J]. Energy Storage Science and Technology, 2016, 5(2):172-176.
[32] PENG H J, HUANG J Q, CHENG X B, et al. Review on high-loading and high-energy lithium-sulfur batteries[J]. Advanced Energy Materials, 2017:doi:10.1002/aenm.201700260.
[33] PENG H J, HUANG J Q, ZHANG Q. A review of flexible lithium-sulfur and analogous alkali metal-chalcogen rechargeable batteries[J]. Chemical Society Reviews, 2017, 46(17):5237-5288.
[34] PERRY M L, FULLER T F. A historical perspective of fuel cell technology in the 20th century[J]. Journal of the Electrochemical Society, 2002, 149(7):S59-S67.
[35] 倪萌, 梁国熙. 碱性燃料电池研究进展[J]. 电池, 2004, 34(5):364-365. NI M, LIANG G X. Development of alkaline fuel cells[J]. Battery Bimonthly, 2004, 34(5):364-365.
[36] 肖钢. 燃料电池技术[M]. 北京:电子工业出版社, 2009.
[37] AKHTAR N, AKHTAR W. Prospects, challenges, and latest developments in lithium-air batteries[J]. International Journal of Energy Research, 2015, 39(3):303-316.
[38] LITTAUER E L, TSAI K C. Anodic behavior of lithium in aqueous electrolytes I. Transient passivation[J]. Journal of the Electrochemical Society, 1976, 123(6):771-776.
[39] 赵玉振, 胡承亮, 罗志虹, 等. 锂空气电池性能改善方法的研究进展[J]. 材料导报:纳米与新材料专辑, 2017(S1):215-222. ZHAO Y Z, HU C L, LUO Z H, et al. Research progress on the performance improvement of Li-air batteries[J]. Materials Review, 2017(S1):215-222.
[40] 罗志虹, 赵玉振, 郭珺, 等. 正极材料与催化剂对锂空气电池性能的影响及相关研究进展[J]. 材料导报, 2015, 29(7):20-26. LUO Z H, ZHAO Y Z, GUO J, et al. Effects of positive elecrtode materials and catalysts on performance of Li-air battery and relative research progress[J]. Materials Review, 2015, 29(7):20-26.
[41] WANG J, LI Y, SUN X. Challenges and opportunities of nanostructured materials for aprotic rechargeable lithium-air batteries[J]. Nano Energy, 2013, 2(4):443-467.
[42] KRAYTSBERG A, EIN-ELI Y. The impact of nano-scaled materials on advanced metal-air battery systems[J]. Nano Energy, 2013, 2(4):468-480.
[43] WANG Y, ZHOU H. A lithium-air battery with a potential to continuously reduce O2, from air for delivering energy[J]. Journal of Power Sources, 2010, 195(1):358-361.
[44] YI J, GUO S, HE P, et al. Status and prospects of polymer electrolytes for solid-state Li-O2(air) batteries[J]. Energy & Environmental Science, 2017, 10(4):860-884.
[45] BITO A. Overview of the sodium-sulfur battery for the IEEE stationary battery committee[C]//IEEE Power Engineering Society General Meeting. San Francisco:2005.
[46] NOURAI A. Installation of the first distributed energy storage system (DESS) at American Electric Power (AEP)[R]. Sandia report, June 2007.
[47] 邱广玮, 刘平, 曾乐才, 等. 钠硫电池发展现状[J]. 材料导报, 2011, 25(21):34-37. QIU G W, LIU P, ZENG L C, et al. Development of the sodium-sulfur battery[J]. Materials Review, 2011, 25(21):34-37.
[48] SKYLLAS-KAZACOS M, CHAKRABARTI M H, HAJIMOLANA S A, et al. Progress in flow battery research and development[J]. Journal of the Electrochemical Society, 2011, 158(8):R55-R79.
[49] SKYLLAS-KAZACOS M, KAZACOS G, Poon G, et al. Recent advances with UNSW vanadium-based redox flow batteries[J]. International Journal of Energy Research, 2010, 34(2):182-189.
[50] 王晓丽, 张宇, 李颖, 等. 全钒液流电池技术与产业发展状况[J]. 储能科学与技术, 2015, 4(5):458-466. WANG X L, ZHANG Y, LI Y, et al. Vanadium flow battery technology and its industrial status[J]. Energy Storage Science and Technology, 2015, 4(5):458-466.
[51] 刘宗浩, 张华民, 高素军, 等. 风场配套用全球最大全钒液流电池储能系统[J]. 储能科学与技术, 2014, 3(1):71-77. LIU Z H, ZHANG H M, GAO S J, et al. The world's largest all-vanadium redox flow battery energy storage system for a wind farm[J]. Energy Storage Science and Technology, 2014, 3(1):71-77.
[52] SOUENTIE S, AMR I, ALSUHAIBANI A, et al. Temperature, charging current and state of charge effects on iron-vanadium flow batteries operation[J]. Applied Energy, 2017, 206:568-576.
[53] 胡林童, 郭凯, 李会巧, 等. 新型锂-液流电池[J]. 科学通报, 2016(3):350-363.
[54] NARAYANAN A, WIJNPERLÉ D, MUGELE F, et al. Influence of electrochemical cycling on the rheo-impedance of anolytes for Li-based semi solid flow batteries[J]. Electrochimica Acta, 2017, 251:388-395.
[55] SANADA K, HOSOKAWA M. Electric double-layer capacitor super capacitor[J]. NEC Research & Development, 1979, 55:21-28.
[56] 刘海晶, 夏永姚. 混合型超级电容器的研究进展[J]. 化学进展, 2011, 23(2):595-604. LIU H J, XIA Y Y. Research progress of hybrid supercapacitor[J]. Progress in Chemistry, 2011, 23(2):595-604.
[57] 赵雪, 邱平达, 姜海静, 等. 超级电容器电极材料研究最新进展[J]. 电子元件与材料, 2015(1):44-48. ZHAO X, QIU P D, JIANG H J, et al. Latest research progress of electrode materials for supercapacitor[J]. Electronic Components and Materials, 2015, 1:44-48.
[58] PISTOIA G. Battery operated devices and systems:From portable electronics to industrial products[M]. Elsevier, 2008.
[59] 吴娇杨, 刘品, 胡勇胜, 等. 锂离子电池和金属锂离子电池的能量密度计算[J]. 储能科学与技术, 2016, 5(4):443-453. WU J Y, LIU P, HU Y S, et al. Calculation on energy densities of lithium ion batteries and metallic lithium ion batteries[J]. Energy Storage Science and Technology, 2016, 5(4):443-453.
[60] PLACKE T, KLOEPSCH R, DÜHNEN S, et al. Lithium ion, lithium metal, and alternative rechargeable battery technologies:the odyssey for high energy density[J]. Journal of Solid State Electrochemistry, 2017, 21(7):1939-1964.
[61] YAO X, LIU D, WANG C, et al. High-energy all-solid-state lithium batteries with ultralong cycle life[J]. Nano Letters, 2016, 16(11):7148-7154.
[62] KIM C S, GUERFI A, HOVINGTON P, et al. Importance of open pore structures with mechanical integrity in designing the cathode electrode for lithium-sulfur batteries[J]. Journal of Power Sources, 2013, 241(6):554-559.
[63] XING L B, XI K, LI Q, et al. Nitrogen, sulfur-codoped graphene sponge as electroactive carbon interlayer for high-energy and-power lithium-sulfur batteries[J]. Journal of Power Sources, 2016, 303:22-28.
[64] HU X, WANG J, LI Z, et al. MCNTs@MnO2 nanocomposite cathode integrated with soluble O2-carrier Co-salen in electrolyte for high-performance Li-air batteries[J]. Nano Letters, 2017, 17(3):2073-2078.
[65] VISCO S J, NIMON V Y, PETROV A, et al. Aqueous and nonaqueous lithium-air batteries enabled by water-stable lithium metal electrodes[J]. Journal of Solid State Electrochemistry, 2014, 18(5):1443-1456.
[66] LI Z, SHAO M, YANG Q, et al. Directed synthesis of carbon nanotube arrays based on layered double hydroxides toward highly-efficient bifunctional oxygen electrocatalysis[J]. Nano Energy, 2017, 37:98-107.
[67] 贾传坤, 王庆. 高能量密度液流电池的研究进展[J]. 储能科学与技术, 2015, 4(5):467-475. JIA C K, WANG Q. The development of high energy density redox flow batteries[J]. Energy Storage Science and Technology, 2015, 4(5):467-475.
[68] 胡娟, 杨水丽, 侯朝勇, 等. 规模化储能技术典型示范应用的现状分析与启示[J]. 电网技术, 2015, 39(4):879-885. HU J, YANG S L, HOU C Y, et al. Present condition analysis on typical demonstration application of large-scale energy storage technology and its enlightenment[J]. Power System Technology, 2015, 39(4):879-885.
[69] 许守平, 李相俊, 惠东. 大规模储能系统发展现状及示范应用[J]. 电源技术, 2015, 39(1):217-220. XU S P, LI X J HUI D. Survey of development and demonstration application of large-scale energy storage[J]. Chinese Journal of Power Sources, 2015, 39(1):217-220.
[70] DOE global energy storage database projects[EB/OL].[2017-8-16]. http://www.energystorageexchange.org/projects.